Polynomial Invariants of Embeddings of Graphs on Closed Surfaces
نویسنده
چکیده
منابع مشابه
On the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملFourth Korea - Japan Workshop on Algebra and Combinatorics ( sponsored by BK 21 - CoDiMaRO , PMI , KOSEF ,
Jin Ho Kwak (POSTECH) Title: Enumeration and genus distribution of maps on surfaces Abstract: Two 2-cell embeddings ı : X → S and : X → S of a connected graph X into a closed orientable surface S are congruent if there are an orientation-preserving surface homeomorphism h on S and a graph automorphism γ of X such that ıh = γ. When we restrict γ as the identity, we say two embeddings are equi...
متن کاملEmbeddings of four-valent framed graphs into 2-surfaces
It is well known that the problem of defining the least (highest) genus where a given graph can be embedded is closely connected to the problem of embedding special four-valent framed graphs, i.e. 4-valent graphs with opposite edge structure at vertices specified. This problem has been studied, and some cases (e.g., recognizing planarity) are known to have a polynomial solution. The aim of the ...
متن کاملDisjoint Essential Cycles
Graphs that have two disjoint noncontractible cycles in every possible embedding in surfaces are characterized. Similar characterization is given for the class of graphs whose orientable embeddings (embeddings in surfaces different from the projective plane, respectively) always have two disjoint noncontractible cycles. For graphs which admit embeddings in closed surfaces without having two dis...
متن کاملOn the super domination number of graphs
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008